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Replacing slow exotics pricers with quick ones based on neural 
networks has been an active area of research and practical 
in-house implementations during the last few years. The promise 
of real-time pricing or blazing fast risk computations, even when 
dealing with very complex portfolios of exotics, is something that 
appeals to many institutions and vendors alike.

The high-level recipe to put that into practice is typically 
the following:

1.	Generate a training set using traditional pricers, over a sufficiently 
large range of market scenarios.

2.	Use the generated data to train a neural network.

3.	Replace the traditional (slow) pricer with the trained network 
in the financial computation at hand (e.g. XVA, VaR, 
or real-time pricing).

While it may look relatively straightforward, there are quite a few 
different ways this can be achieved. 

Much has already been written on the subject (see for example [1] 
and [2] and references therein). The objective of this article is to 
summarize some of the choices that need to be made and factors 
that need to be considered to produce satisfactory results, along 
with specific observations based on our experience in 
implementing our own neural pricing and risk system at FIS.

Ground truth vs sample based
Each learning task of any kind starts with a training set, i.e. a set of 
examples that we want to learn from. The distinguishing factor in 
our specific context is that the training set is not exogenous but 
needs to be generated by the user, which is both a challenge and 
an opportunity.

When generating the training set, we first need to decide what to 
generate exactly. The first choice is to train on ground truth prices 
computed by an existing (slow) pricer on the different market 
scenarios. This is the most direct approach, and it works very well. 
However, it is likely to be very computationally demanding. If a 
pricer takes a couple of seconds to run, it could take several 
months to produce a few million examples (unless cloud computing 
is used).

A second approach is to generate Monte Carlo samples where each 
sample consists of a single Monte Carlo path simulated from each 
market scenario. One can also use a few Monte Carlo paths 
averaged out, to keep the training set a bit smaller and less noisy. 
This is based on an old idea that dates back to the classical 
American Monte Carlo (AMC) algorithm, that has been brought to 
new life in recent years and extended in various ways, particularly in 
the XVA context (see [1]). The advantage of this method is that 
generating samples is orders of magnitudes faster than generating 
prices, especially when they can be run in parallel. It’s a more 
accurate method when run with a finite time budget. 

Samples are therefore equivalent to very noisy Monte Carlo prices. 
One can switch from ground truth to sample based learning by 
reducing the number of paths required to compute a single 
valuation, assuming that the original pricing function is based on 
Monte Carlo simulation. That is usually very beneficial (as remarked 
very early on by [2]), although there is a strong limit in doing so 
when the single valuation includes fixed running costs that are 
independent from the number of paths (such as calibration and 
exposure estimations for callables). We will mention these aspects 
in the following sections.
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Input types
Before continuing, it is useful to settle some terminology on the 
different types of parameters (or variables) that can be used as 
inputs for neural pricers:

	● Market parameters are raw data of traded instruments that are 
directly available from the market (like swap rates, implied 
volatility surfaces or CDS rates). Often one cannot directly plug 
these variables into a pricing model; a calibration step needs to 
be performed first.

	● Model parameters are the results of the calibration step, that is 
values that can directly be used to generate simulation paths. 
Examples are zero rates, local volatilities, hazard rates and factor 
correlations.

	● State variables are the quantities whose evolution is described by 
the pricing model. Examples are spot prices, short rates or 
stochastic volatilities. While model parameters stay constant 
over a path, state variables evolve based on the model 
parameters and a set of random draws. 

	● Payoff parameters are values that are specific to a certain deal 
type. Examples are strikes, knock-in barriers, coupon rates and 
trade maturity.

Learning model calibration (or not?)
Ground truth learning generally also learns the model calibration 
along with the pricing, producing functions of market parameters. 
Alternatively, sample based learning (similarly to AMC) traditionally 
only takes state variables as inputs, which is enough in many risk 
applications like CVA. That doesn’t need to be the case though: in 
addition to state variables, sample based learning can be extended 
to include model parameters and payoff parameters as inputs. 

In the context of sample based learning, it is generally undesirable 
to use market parameters, which need to be processed through 
calibration before the actual path generation can start. This is 
because calibration is usually an optimization procedure that can 
add a significant overhead to the sample generation. This will likely 
prevent multiple samples from being run in parallel when starting 
from different market data, greatly reducing the benefits of working 
with samples of few simulation paths each. On the other hand, 
when using ground truth learning, a single valuation is already 
relatively slow. Including the calibration step makes more sense as 
it only adds a comparatively small overhead.

It is a matter of choice, which depends on the objectives and 
constraints of the final user. One needs to carefully evaluate the 
trade-off between training time and evaluation time of the trained 
model plus the calibration, based on the application at hand. We 
tend to prefer the use of sample based learning on state variables 
and model and payoff parameters when needed. This allows us to 

take full advantage of a very fast and parallel training set 
generation, and a quick training of any deal type almost on the fly. 

The main limitation is that when a calibration is required, it will 
need to be performed externally from the trained pricer, potentially 
making it slower to use. However, optimizations are possible and 
relatively straightforward, as calibrations are generally reusable 
over many products in the same portfolio. This makes it redundant 
to inflate the training time to learn the same calibration for multiple 
deal types.

Which (and how many) inputs?
We want to learn a pricing function, but a function of what? Sample 
based learning was born in the context of AMC. It traditionally 
learns a function of the model state variables, everything else being 
fixed such as the maturity/time horizon, the model and payoff 
parameters. This allows it to be executed relatively quickly as a 
preliminary step of a pricing task that involves some form of 
callability. 

XVA regressors for future exposures can also be computed using 
the same logic as functions of state variables only. The reason is 
that XVA can generally be seen as the pricing of a complex option, 
with model and payoff parameters fixed at time zero. 

On the other hand, the same logic of using only state variables as 
inputs of the learnt pricing functionals is no longer suitable for other 
types of risk computations. This includes Value-at-Risk (VaR), which 
requires multiple revaluations at the risk horizon using different 
(shocked) market/model parameters, or front office applications 
such as real-time pricing where many consecutive valuations with 
different market data (and potentially new payoffs) need to be 
performed in a short amount of time.

Therefore, it is sometimes necessary to train effective 
approximators that are functions not only of state variables, but 
also of model/market and payoff parameters. We will call these full 
pricers for simplicity. Given their additional complexity, these can 
no longer make use of polynomial regressions as for standard AMC. 
Instead, they need to use more sophisticated functionals such as 
neural networks, which can handle large input dimensions 
substantially better than traditional methods due to their 
approximation and generalization capabilities. Adding input 
dimensions will make the learning slower, although not necessarily 
by an excessive amount, thanks to Monte Carlo sampling.

It seems more common to train full pricers in a ground truth 
learning framework using a relatively high number of paths and 
including calibration. However, it appears to be less well known that 
these can also be learnt using sample based learning, with 
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substantial training performance improvements. The idea here is to 
simply generate each path, or minibatch of paths, starting from 
different model and/or payoff parameter values, by sampling them 
over some suitable domains. Explicit averages are only computed 
over the individual minibatches.

Generating scenarios
We mentioned the need to generate, before each MC path 
evolution, scenarios for initial state variables and for market/model 
and payoff parameters, if training a full pricer. The first step is to 
choose some suitable ranges for these values. It’s important to 
keep in mind that the trained pricer will only be valid when called 
with input values inside those ranges. Neural networks act very 
well as interpolators but can be unpredictable as extrapolators, 
although they’re generally substantially more stable than 
polynomials. For example, one might decide to train a vanilla 
option pricer for strikes between 60% and 140%, maturities 
between 0 and 5 years, rates between -1% and 4%, and vols 
between 10% and 40%. 

Once the domains are chosen, the next question is how to sample 
over those domains. A few options are available:

1.	 Sample all values uniformly over their domains, 
and independently from each other.

2.	 Sample all values uniformly (and independently) over some 
specific points of their domains. For example, Chebyshev 
points, that are known to have good interpolation properties.

3.	 For term structured or surface data, choose a common 
parametrization (like Nelson-Siegel or SSVI) and sample those 
shape parameters over some reasonable ranges. This will likely 
produce more realistic data than a naïve independent sampling 
of all tenors/nodes. Then it is up to the user if they want to use 
those shape parameters as network inputs, or only use them to 
generate data at fixed tenors/nodes, and then take that 
generated data as network inputs.

4.	 Use historical data (although there might not be enough data 
available) or more sophisticated generative market models 
calibrated on historical data.

For this particular application, the important thing to remember 
is that using “realistic” data samples does not have the same 
importance that it has in other contexts; for example, when running 
scenarios for risk calculations or performance projections. The 
main purpose here is to expose the training routine to a sufficiently 

rich range of scenarios. That way, when the pricer is used on real 
market data, we can be sure the network has already seen a similar 
data configuration, or can successfully interpolate between 
sufficiently close ones that it has already seen. A minimal amount of 
realism is desirable nonetheless, especially in term structure or 
surface data. For example, if we sample a 1Y rate at 4% on one given 
scenario, we will probably not want the 2Y rate to be at -2% on that 
same scenario. This would risk creating domain configurations 
where the objective pricing function is very steep in time and 
possibly harder to learn, with respect to a more realistic sampling 
where term structures behave more smoothly.

It’s generally optimal to use the naïve approach 1. for scalar market 
or payoff data. On the other hand, 2. with Chebyshev points doesn’t 
seem to add much value in our tests. For term structured and 
surface data, some form of 3. is always useful.

Which network structure?
Traditional feed-forward neural networks are generally used as 
function approximators, as they are simple, versatile and well 
understood. Although, different architectures might also be 
explored, such as ResNets or even Transformers, which have proven 
incredibly successful in many different areas of AI in recent years. It 
has also been suggested in [3] to use special jump units as a means 
for replicating the jump behavior that is typically observed in 
certain regions of the pricing functions, for example close to 
maturity or coupon dates. It is even possible to radically depart 
from neural networks completely, as recently explored in [5]. If one 
wishes to use the differential training technique (described in the 
next section), all the internal activation functions need to be twice 
continuously differentiable.

The size and depth of the network will greatly depend on the 
complexity of the problem. When learning a simple Black-Scholes 
call option pricer as a function of a single spot input, a couple layers 
with a few dozen nodes might be enough for great accuracy. On the 
other hand, if we want to fit a complex callable PRD product with 
multiple coupons under a hybrid FX/IR model, as a function of, say, 
100 input variables (knock in/out barriers, strike, maturity, rates, 
forwards, local volatilities, mean reversions), then we will need a 
substantially wider and deeper network, possibly with more than 10 
layers and 100 nodes. Learning more complex functionals will also 
likely require to run more training epochs to achieve the desired 
accuracy.
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The same standard mean-square-error (MSE) loss function can be 
used for both ground truth and sample based learning. So, a single 
learning framework can be built for both approaches, even though 
we are doing slightly different things in the two cases: a 
straightforward prediction of input labels in the former case, and an 
L2 projection (i.e. a conditional expectation) in the latter, 
theoretically leading to the same result. The extra advantage of 
sample based learning is that the network is never trying to exactly 
fit the input labels, which makes it empirically almost impossible to 
experience overfitting for normal configurations of sample sizes and 
parameter counts. That is a very valuable trait, considering that 
overfitting is one of the most recurring problems in deep learning.

It is generally good practice, at least when learning full pricers with 
many input variables, to also generate a testing set by running a full 
“classical” Monte Carlo pricing on an independent random set of 
input data, and use it to compare those “true” data points with the 
network-generated ones over each training epoch. This allows to 
track the network accuracy and potentially early stop the training 
once it achieves the desired precision.

Differential machine learning
It has recently been proposed (by [1]) to perform the training using 
not only the standard cash-flow samples, but also including the 
corresponding pathwise differentials with respect to the various 
input variables into an additional term in the loss function. The idea 
is to boost the standard “level based” regressor by providing 
additional shape information and allowing it to converge faster and 
in a more stable way. 

The downside of this approach is the additional time required to 
compute the pathwise differentials. Although with a good AAD 
system, that can be limited to a few times the base running time. 
Memory can also be a limiting factor, both at the training set 
generation phase (due to the need to keep a tape of all the 
operations on all the paths at the same time, when generated in 
parallel), and at the actual network training step (linked to the fact 
of having many more labels to store into GPU memory).

The effects of using this technique can be astonishing, with the 
potential of increasing the network accuracy by several orders of 
magnitude. We tend to observe a less pronounced performance 
boost when the number of training paths increases, the payoff gets 
more complex and as we start adding multiple input variables for 
learning a full pricer. In those cases, it is most probably optimal to 
avoid differentiating with respect to the full set of input variables, by 
only picking a smaller subset instead.

The application of differential learning should be evaluated and 
customized to each particular use case, in particular for pricing vs 
risk applications, and considering the time/memory budget for the 
current problem. Regardless, it remains a useful technique that 
should always be part of a neural pricing solution.

Callable trades and neural AMC
An important limitation to fully exploiting the benefits of sample 
based learning  is encountered when dealing with callable 
products. When pricing callables with Monte Carlo, one typically 
runs a set of American Monte Carlo (AMC) regressions before the 
main simulation, to estimate the optimal exercise region to be 
applied on every call date. In the context of learning, this would 
mean that every training sample that uses a different set of model 
and payoff parameters needs to run its own AMC regressions 
before it can be generated. 

This approach has a huge impact on the performance of the 
learning set generation for two reasons: because the AMC step 
represents a very significant overhead (especially when performed 
only to allow the simulation of a handful of paths), and because 
such a routine will likely prevent different samples to be generated 
in parallel.

This limitation pushes towards using ground truth learning in the 
case of callables, using a large number of paths per sample to 
reduce the relative overhead of the repeated AMC steps on the 
overall calculation.

There is an alternative however, which is novel to the best of our 
knowledge. This consists of running only one single “big” 
preliminary AMC step, and then using the same trained AMC 
regressors in the generation of all training samples with all input 
parameters. To achieve that, one needs to:

	● Run the forward AMC simulation with different sets of model/
payoff parameters on each path, similarly to the main sample 
generation (also using the same parameter domains).

	● When running the backward AMC pass, train AMC regressors on 
call dates in the form of neural networks. These can have same 
input dimension as the main simulation (minus the time 
dimension, as that is fixed for AMC exposures), although that is 
not strictly necessary.

One apparent difficulty lies in that if we want to include the maturity 
as an input of the pricer, we need to train on samples with different 
maturities. However, by definition the AMC routine can only be run 
with a fixed maturity and exposure dates. The solution is to run the 
AMC on all paths with a single maturity, corresponding to the upper 
bound of the input maturity range. That will generate exercise 
regressors at fixed distances from maturity. These can later be used 
during sample generation to take exercise decisions at those times 
to maturity by any trade, independently of its original maturity. 
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The underlying hypothesis is that the exercise frequency doesn’t 
change across trades in the training set. Otherwise, it would require 
running separate AMC routines for each call frequency. Another 
crucial implementation point is that time-dependent inputs such 
as zero rates or local vols need to be recentered to each specific call 
date before being fed to the exercise regressors. This ensures the 
input data for the regressor networks always keep the same 
meaning when used by samples with different initial maturities. 
See the figure below for a graphical visualization.

Since the accuracy of the AMC step only plays a second-order role 
in the accuracy of the overall pricing, it can be run using smaller 
network architectures than the one used for the main pricer, and 
with a limited number of paths. It seems reasonable to use 
whatever capacity is allowed by a single GPU batch.

Using neural AMC allows the generation of training samples for 
callable trades in a similar way as for non callables with all the 
associated performance benefits, by only adding a single extra 
global exercise estimation step. An additional benefit with respect 
to the traditional AMC is that here one does not need to manually 
specify a set of trade-specific regression variables, and that the 
exercise estimation with neural networks is substantially more 
accurate than with polynomials.

Schematics of the different Monte Carlo modes.
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● With either the same or with different model and payoff 
parameters on each path (even different maturities), i.e. for 
“classical” Monte Carlo pricing or for generating training sets for 
sample based learning. In the former case, paths get averaged out 
to compute the final price, while in the latter they are returned as 
is to be fed to the network calibrator.

● With or without AAD. This is simply a matter of specifying, in the 
initialization methods, which input variables need to be tracked 
for differentiation. The same code produces either standard 
sensitivities in case of classical Monte Carlo pricing, or pathwise 
differentials in case of differential learning.

● With any model, whose parameters and state evolution need to 
be specified inside the generator object. New models (also written 
in Tensorflow) can be easily added to the library.

● With any payoff, whose evaluation rules and cash-flow dates are 
specified in dedicated classes. Callable payoff samples are also 
simulated by the same code, although they require a preliminary 
neural AMC step.

● With any hardware. Vectorized CPU or GPU run on the same code. 
Moreover, one can either run it in compiled or eager mode, based 
on whether it needs to be executed once or multiple times with 
higher efficiency.

Tensorflow implementation
Tensorflow is a well-known generic framework for parallel and 
distributed computing on CPU and GPU. It is specifically optimized 
for tensor and matrix operations, with native support for automatic 
differentiation. Those are the ideal characteristics for a deep 
learning library, which is the main reason why it has been built and 
it is still widely used. 

What is slightly less known is that the same open-source 
technology is also suitable for a type of calculation that is 
ubiquitous in the financial industry, i.e. the Monte Carlo simulation 
of financial models whose dynamics can be expressed as matrix 
operations, and the associated computation of sensitivities of 
results with respect to the input variables. This implies that running 
highly efficient parallel simulations and vectorized computations 
on the latest CPUs and GPUs (or even TPUs) with AAD is today 
infinitely easier than it was years ago. It also no longer requires 
substantial investments and customized implementations for each 
hardware.

For these reasons, our neural pricing and risk solution uses 
Tensorflow for both training the network and generating the 
training data samples through Monte Carlo. We share below an 
extract of the Monte Carlo implementation which is at the heart of 
the system. This is to highlight that same small piece of code has 
the flexibility to handle simulation jobs in all of the following cases:

Snippet of the Tensorflow Monte Carlo code.
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We have outlined the main features and design choices of the 
neural exotic pricing library that we are currently developing at FIS. 
We see these functionalities as important building blocks for our 
future pricing and risk system. We hope that this white paper will 
help other industry participants by providing additional clarity 
and some new insights on such a rich subject.

CONCLUSIONS
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