
WHITE PAPER

GIUSEPPE BENEDETTI

DEVELOPING A NEURAL
EXOTIC PRICING LIBRARY
WITH TENSORFLOW

2

Replacing slow exotics pricers with quick ones based on neural
networks has been an active area of research and practical
in-house implementations during the last few years. The promise
of real-time pricing or blazing fast risk computations, even when
dealing with very complex portfolios of exotics, is something that
appeals to many institutions and vendors alike.

The high-level recipe to put that into practice is typically
the following:

1. Generate a training set using traditional pricers, over a sufficiently
large range of market scenarios.

2. Use the generated data to train a neural network.

3. Replace the traditional (slow) pricer with the trained network
in the financial computation at hand (e.g. XVA, VaR,
or real-time pricing).

While it may look relatively straightforward, there are quite a few
different ways this can be achieved.

Much has already been written on the subject (see for example [1]
and [2] and references therein). The objective of this article is to
summarize some of the choices that need to be made and factors
that need to be considered to produce satisfactory results, along
with specific observations based on our experience in
implementing our own neural pricing and risk system at FIS.

Ground truth vs sample based
Each learning task of any kind starts with a training set, i.e. a set of
examples that we want to learn from. The distinguishing factor in
our specific context is that the training set is not exogenous but
needs to be generated by the user, which is both a challenge and
an opportunity.

When generating the training set, we first need to decide what to
generate exactly. The first choice is to train on ground truth prices
computed by an existing (slow) pricer on the different market
scenarios. This is the most direct approach, and it works very well.
However, it is likely to be very computationally demanding. If a
pricer takes a couple of seconds to run, it could take several
months to produce a few million examples (unless cloud computing
is used).

A second approach is to generate Monte Carlo samples where each
sample consists of a single Monte Carlo path simulated from each
market scenario. One can also use a few Monte Carlo paths
averaged out, to keep the training set a bit smaller and less noisy.
This is based on an old idea that dates back to the classical
American Monte Carlo (AMC) algorithm, that has been brought to
new life in recent years and extended in various ways, particularly in
the XVA context (see [1]). The advantage of this method is that
generating samples is orders of magnitudes faster than generating
prices, especially when they can be run in parallel. It’s a more
accurate method when run with a finite time budget.

Samples are therefore equivalent to very noisy Monte Carlo prices.
One can switch from ground truth to sample based learning by
reducing the number of paths required to compute a single
valuation, assuming that the original pricing function is based on
Monte Carlo simulation. That is usually very beneficial (as remarked
very early on by [2]), although there is a strong limit in doing so
when the single valuation includes fixed running costs that are
independent from the number of paths (such as calibration and
exposure estimations for callables). We will mention these aspects
in the following sections.

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

3

Input types
Before continuing, it is useful to settle some terminology on the
different types of parameters (or variables) that can be used as
inputs for neural pricers:

 ● Market parameters are raw data of traded instruments that are
directly available from the market (like swap rates, implied
volatility surfaces or CDS rates). Often one cannot directly plug
these variables into a pricing model; a calibration step needs to
be performed first.

 ● Model parameters are the results of the calibration step, that is
values that can directly be used to generate simulation paths.
Examples are zero rates, local volatilities, hazard rates and factor
correlations.

 ● State variables are the quantities whose evolution is described by
the pricing model. Examples are spot prices, short rates or
stochastic volatilities. While model parameters stay constant
over a path, state variables evolve based on the model
parameters and a set of random draws.

 ● Payoff parameters are values that are specific to a certain deal
type. Examples are strikes, knock-in barriers, coupon rates and
trade maturity.

Learning model calibration (or not?)
Ground truth learning generally also learns the model calibration
along with the pricing, producing functions of market parameters.
Alternatively, sample based learning (similarly to AMC) traditionally
only takes state variables as inputs, which is enough in many risk
applications like CVA. That doesn’t need to be the case though: in
addition to state variables, sample based learning can be extended
to include model parameters and payoff parameters as inputs.

In the context of sample based learning, it is generally undesirable
to use market parameters, which need to be processed through
calibration before the actual path generation can start. This is
because calibration is usually an optimization procedure that can
add a significant overhead to the sample generation. This will likely
prevent multiple samples from being run in parallel when starting
from different market data, greatly reducing the benefits of working
with samples of few simulation paths each. On the other hand,
when using ground truth learning, a single valuation is already
relatively slow. Including the calibration step makes more sense as
it only adds a comparatively small overhead.

It is a matter of choice, which depends on the objectives and
constraints of the final user. One needs to carefully evaluate the
trade-off between training time and evaluation time of the trained
model plus the calibration, based on the application at hand. We
tend to prefer the use of sample based learning on state variables
and model and payoff parameters when needed. This allows us to

take full advantage of a very fast and parallel training set
generation, and a quick training of any deal type almost on the fly.

The main limitation is that when a calibration is required, it will
need to be performed externally from the trained pricer, potentially
making it slower to use. However, optimizations are possible and
relatively straightforward, as calibrations are generally reusable
over many products in the same portfolio. This makes it redundant
to inflate the training time to learn the same calibration for multiple
deal types.

Which (and how many) inputs?
We want to learn a pricing function, but a function of what? Sample
based learning was born in the context of AMC. It traditionally
learns a function of the model state variables, everything else being
fixed such as the maturity/time horizon, the model and payoff
parameters. This allows it to be executed relatively quickly as a
preliminary step of a pricing task that involves some form of
callability.

XVA regressors for future exposures can also be computed using
the same logic as functions of state variables only. The reason is
that XVA can generally be seen as the pricing of a complex option,
with model and payoff parameters fixed at time zero.

On the other hand, the same logic of using only state variables as
inputs of the learnt pricing functionals is no longer suitable for other
types of risk computations. This includes Value-at-Risk (VaR), which
requires multiple revaluations at the risk horizon using different
(shocked) market/model parameters, or front office applications
such as real-time pricing where many consecutive valuations with
different market data (and potentially new payoffs) need to be
performed in a short amount of time.

Therefore, it is sometimes necessary to train effective
approximators that are functions not only of state variables, but
also of model/market and payoff parameters. We will call these full
pricers for simplicity. Given their additional complexity, these can
no longer make use of polynomial regressions as for standard AMC.
Instead, they need to use more sophisticated functionals such as
neural networks, which can handle large input dimensions
substantially better than traditional methods due to their
approximation and generalization capabilities. Adding input
dimensions will make the learning slower, although not necessarily
by an excessive amount, thanks to Monte Carlo sampling.

It seems more common to train full pricers in a ground truth
learning framework using a relatively high number of paths and
including calibration. However, it appears to be less well known that
these can also be learnt using sample based learning, with

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

4

substantial training performance improvements. The idea here is to
simply generate each path, or minibatch of paths, starting from
different model and/or payoff parameter values, by sampling them
over some suitable domains. Explicit averages are only computed
over the individual minibatches.

Generating scenarios
We mentioned the need to generate, before each MC path
evolution, scenarios for initial state variables and for market/model
and payoff parameters, if training a full pricer. The first step is to
choose some suitable ranges for these values. It’s important to
keep in mind that the trained pricer will only be valid when called
with input values inside those ranges. Neural networks act very
well as interpolators but can be unpredictable as extrapolators,
although they’re generally substantially more stable than
polynomials. For example, one might decide to train a vanilla
option pricer for strikes between 60% and 140%, maturities
between 0 and 5 years, rates between -1% and 4%, and vols
between 10% and 40%.

Once the domains are chosen, the next question is how to sample
over those domains. A few options are available:

1. Sample all values uniformly over their domains,
and independently from each other.

2. Sample all values uniformly (and independently) over some
specific points of their domains. For example, Chebyshev
points, that are known to have good interpolation properties.

3. For term structured or surface data, choose a common
parametrization (like Nelson-Siegel or SSVI) and sample those
shape parameters over some reasonable ranges. This will likely
produce more realistic data than a naïve independent sampling
of all tenors/nodes. Then it is up to the user if they want to use
those shape parameters as network inputs, or only use them to
generate data at fixed tenors/nodes, and then take that
generated data as network inputs.

4. Use historical data (although there might not be enough data
available) or more sophisticated generative market models
calibrated on historical data.

For this particular application, the important thing to remember
is that using “realistic” data samples does not have the same
importance that it has in other contexts; for example, when running
scenarios for risk calculations or performance projections. The
main purpose here is to expose the training routine to a sufficiently

rich range of scenarios. That way, when the pricer is used on real
market data, we can be sure the network has already seen a similar
data configuration, or can successfully interpolate between
sufficiently close ones that it has already seen. A minimal amount of
realism is desirable nonetheless, especially in term structure or
surface data. For example, if we sample a 1Y rate at 4% on one given
scenario, we will probably not want the 2Y rate to be at -2% on that
same scenario. This would risk creating domain configurations
where the objective pricing function is very steep in time and
possibly harder to learn, with respect to a more realistic sampling
where term structures behave more smoothly.

It’s generally optimal to use the naïve approach 1. for scalar market
or payoff data. On the other hand, 2. with Chebyshev points doesn’t
seem to add much value in our tests. For term structured and
surface data, some form of 3. is always useful.

Which network structure?
Traditional feed-forward neural networks are generally used as
function approximators, as they are simple, versatile and well
understood. Although, different architectures might also be
explored, such as ResNets or even Transformers, which have proven
incredibly successful in many different areas of AI in recent years. It
has also been suggested in [3] to use special jump units as a means
for replicating the jump behavior that is typically observed in
certain regions of the pricing functions, for example close to
maturity or coupon dates. It is even possible to radically depart
from neural networks completely, as recently explored in [5]. If one
wishes to use the differential training technique (described in the
next section), all the internal activation functions need to be twice
continuously differentiable.

The size and depth of the network will greatly depend on the
complexity of the problem. When learning a simple Black-Scholes
call option pricer as a function of a single spot input, a couple layers
with a few dozen nodes might be enough for great accuracy. On the
other hand, if we want to fit a complex callable PRD product with
multiple coupons under a hybrid FX/IR model, as a function of, say,
100 input variables (knock in/out barriers, strike, maturity, rates,
forwards, local volatilities, mean reversions), then we will need a
substantially wider and deeper network, possibly with more than 10
layers and 100 nodes. Learning more complex functionals will also
likely require to run more training epochs to achieve the desired
accuracy.

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

5

The same standard mean-square-error (MSE) loss function can be
used for both ground truth and sample based learning. So, a single
learning framework can be built for both approaches, even though
we are doing slightly different things in the two cases: a
straightforward prediction of input labels in the former case, and an
L2 projection (i.e. a conditional expectation) in the latter,
theoretically leading to the same result. The extra advantage of
sample based learning is that the network is never trying to exactly
fit the input labels, which makes it empirically almost impossible to
experience overfitting for normal configurations of sample sizes and
parameter counts. That is a very valuable trait, considering that
overfitting is one of the most recurring problems in deep learning.

It is generally good practice, at least when learning full pricers with
many input variables, to also generate a testing set by running a full
“classical” Monte Carlo pricing on an independent random set of
input data, and use it to compare those “true” data points with the
network-generated ones over each training epoch. This allows to
track the network accuracy and potentially early stop the training
once it achieves the desired precision.

Differential machine learning
It has recently been proposed (by [1]) to perform the training using
not only the standard cash-flow samples, but also including the
corresponding pathwise differentials with respect to the various
input variables into an additional term in the loss function. The idea
is to boost the standard “level based” regressor by providing
additional shape information and allowing it to converge faster and
in a more stable way.

The downside of this approach is the additional time required to
compute the pathwise differentials. Although with a good AAD
system, that can be limited to a few times the base running time.
Memory can also be a limiting factor, both at the training set
generation phase (due to the need to keep a tape of all the
operations on all the paths at the same time, when generated in
parallel), and at the actual network training step (linked to the fact
of having many more labels to store into GPU memory).

The effects of using this technique can be astonishing, with the
potential of increasing the network accuracy by several orders of
magnitude. We tend to observe a less pronounced performance
boost when the number of training paths increases, the payoff gets
more complex and as we start adding multiple input variables for
learning a full pricer. In those cases, it is most probably optimal to
avoid differentiating with respect to the full set of input variables, by
only picking a smaller subset instead.

The application of differential learning should be evaluated and
customized to each particular use case, in particular for pricing vs
risk applications, and considering the time/memory budget for the
current problem. Regardless, it remains a useful technique that
should always be part of a neural pricing solution.

Callable trades and neural AMC
An important limitation to fully exploiting the benefits of sample
based learning is encountered when dealing with callable
products. When pricing callables with Monte Carlo, one typically
runs a set of American Monte Carlo (AMC) regressions before the
main simulation, to estimate the optimal exercise region to be
applied on every call date. In the context of learning, this would
mean that every training sample that uses a different set of model
and payoff parameters needs to run its own AMC regressions
before it can be generated.

This approach has a huge impact on the performance of the
learning set generation for two reasons: because the AMC step
represents a very significant overhead (especially when performed
only to allow the simulation of a handful of paths), and because
such a routine will likely prevent different samples to be generated
in parallel.

This limitation pushes towards using ground truth learning in the
case of callables, using a large number of paths per sample to
reduce the relative overhead of the repeated AMC steps on the
overall calculation.

There is an alternative however, which is novel to the best of our
knowledge. This consists of running only one single “big”
preliminary AMC step, and then using the same trained AMC
regressors in the generation of all training samples with all input
parameters. To achieve that, one needs to:

 ● Run the forward AMC simulation with different sets of model/
payoff parameters on each path, similarly to the main sample
generation (also using the same parameter domains).

 ● When running the backward AMC pass, train AMC regressors on
call dates in the form of neural networks. These can have same
input dimension as the main simulation (minus the time
dimension, as that is fixed for AMC exposures), although that is
not strictly necessary.

One apparent difficulty lies in that if we want to include the maturity
as an input of the pricer, we need to train on samples with different
maturities. However, by definition the AMC routine can only be run
with a fixed maturity and exposure dates. The solution is to run the
AMC on all paths with a single maturity, corresponding to the upper
bound of the input maturity range. That will generate exercise
regressors at fixed distances from maturity. These can later be used
during sample generation to take exercise decisions at those times
to maturity by any trade, independently of its original maturity.

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

6

The underlying hypothesis is that the exercise frequency doesn’t
change across trades in the training set. Otherwise, it would require
running separate AMC routines for each call frequency. Another
crucial implementation point is that time-dependent inputs such
as zero rates or local vols need to be recentered to each specific call
date before being fed to the exercise regressors. This ensures the
input data for the regressor networks always keep the same
meaning when used by samples with different initial maturities.
See the figure below for a graphical visualization.

Since the accuracy of the AMC step only plays a second-order role
in the accuracy of the overall pricing, it can be run using smaller
network architectures than the one used for the main pricer, and
with a limited number of paths. It seems reasonable to use
whatever capacity is allowed by a single GPU batch.

Using neural AMC allows the generation of training samples for
callable trades in a similar way as for non callables with all the
associated performance benefits, by only adding a single extra
global exercise estimation step. An additional benefit with respect
to the traditional AMC is that here one does not need to manually
specify a set of trade-specific regression variables, and that the
exercise estimation with neural networks is substantially more
accurate than with polynomials.

Schematics of the different Monte Carlo modes.

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

7

● With either the same or with different model and payoff
parameters on each path (even different maturities), i.e. for
“classical” Monte Carlo pricing or for generating training sets for
sample based learning. In the former case, paths get averaged out
to compute the final price, while in the latter they are returned as
is to be fed to the network calibrator.

● With or without AAD. This is simply a matter of specifying, in the
initialization methods, which input variables need to be tracked
for differentiation. The same code produces either standard
sensitivities in case of classical Monte Carlo pricing, or pathwise
differentials in case of differential learning.

● With any model, whose parameters and state evolution need to
be specified inside the generator object. New models (also written
in Tensorflow) can be easily added to the library.

● With any payoff, whose evaluation rules and cash-flow dates are
specified in dedicated classes. Callable payoff samples are also
simulated by the same code, although they require a preliminary
neural AMC step.

● With any hardware. Vectorized CPU or GPU run on the same code.
Moreover, one can either run it in compiled or eager mode, based
on whether it needs to be executed once or multiple times with
higher efficiency.

Tensorflow implementation
Tensorflow is a well-known generic framework for parallel and
distributed computing on CPU and GPU. It is specifically optimized
for tensor and matrix operations, with native support for automatic
differentiation. Those are the ideal characteristics for a deep
learning library, which is the main reason why it has been built and
it is still widely used.

What is slightly less known is that the same open-source
technology is also suitable for a type of calculation that is
ubiquitous in the financial industry, i.e. the Monte Carlo simulation
of financial models whose dynamics can be expressed as matrix
operations, and the associated computation of sensitivities of
results with respect to the input variables. This implies that running
highly efficient parallel simulations and vectorized computations
on the latest CPUs and GPUs (or even TPUs) with AAD is today
infinitely easier than it was years ago. It also no longer requires
substantial investments and customized implementations for each
hardware.

For these reasons, our neural pricing and risk solution uses
Tensorflow for both training the network and generating the
training data samples through Monte Carlo. We share below an
extract of the Monte Carlo implementation which is at the heart of
the system. This is to highlight that same small piece of code has
the flexibility to handle simulation jobs in all of the following cases:

Snippet of the Tensorflow Monte Carlo code.

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

8

Bibliography
1. Huge, B. and Savine, A. (2020): Differential Machine

Learning. Arxiv

2. Ferguson, R. and Green A.D. (2018): Deeply Learning
Derivatives. SSRN

3. Bergeron, M. and Sergienko, I. (2020): Deep Learning to
Jump. Medium

4. Belletti, F. et al. (2020): Sensitivity Analysis in the Dupire
Local Volatility Model with Tensorflow. Arxiv

5. Antonov, A. and Piterbarg, V. (2021): Alternatives to Deep
Neural Networks in Finance. SSRN

©2023 FIS
FIS and the FIS logo are trademarks or registered trademarks of FIS or its subsidiaries in the U.S.
and/or other countries. Other parties’ marks are the property of their respective owners. 2176039

About FIS
FIS is a leading provider of technology solutions for financial institutions
and businesses of all sizes and across any industry globally. We enable the
movement of commerce by unlocking the financial technology that powers the
world’s economy. Our employees are dedicated to advancing the way the world
pays, banks and invests through our trusted innovation, system performance
and flexible architecture. We help our clients use technology in innovative ways
to solve business-critical challenges and deliver superior experiences for their
customers. Headquartered in Jacksonville, Florida, FIS is a member of the
Fortune 500® and the Standard & Poor’s 500® Index.

linkedin.com/company/fis

www.fisglobal.com

getinfo@fisglobal.com

twitter.com/fisglobal

We have outlined the main features and design choices of the
neural exotic pricing library that we are currently developing at FIS.
We see these functionalities as important building blocks for our
future pricing and risk system. We hope that this white paper will
help other industry participants by providing additional clarity
and some new insights on such a rich subject.

CONCLUSIONS

FOR FURTHER INFORMATION CONTACT
US ON EMAIL GETINFO@FISGLOBAL.COM.

CONTACT US

Developing	A	Neural	Exotic	Pricing	Library	With	Tensorflow

https://arxiv.org/abs/2005.02347
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3244821
https://towardsdatascience.com/deep-learning-to-jump-e507103ab8d3?gi=1d6ac324c6f9
https://arxiv.org/pdf/2002.02481v1.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3244821
https://www.linkedin.com/company/fis
http://www.fisglobal.com
mailto:getinfo%40fisglobal.com?subject=Scaling%20Your%20Fintech%20Business%20With%20Partners
http://twitter.com/fisglobal
http://linkedin.com/company/fis
mailto:http://getinfo%40fisglobal.com?subject=
mailto:http://getinfo%40fisglobal.com?subject=
mailto:http://getinfo%40fisglobal.com?subject=

