FIS Modern Banking Platform
Advance your bank with a modern core platform.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
FIS Modern Banking Platform
Advance your bank with a modern core platform.
Data Restore
Protection from disaster.
Code Connect
The power of APIs with the scale of FIS.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
FIS Private Capital Suite
Data Exchange Solutions.
IFRS17
The right strategy for transformation.
Commercial Lending
Speed up the decision process.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
Worldpay is now FIS. Your experience is our top priority. We’re here to help.
“It’s really important that we have more intelligence than artificial.” -- Apple co-founder Steve Wozniak’s thought on artificial intelligence (AI) at Money20/20
Financial institutions can use machine learning applications to build a data strategy that becomes smarter and more robust over time. When used correctly, AI can reduce payment fraud, personalize customer experience, boost the relevance and profitability of rewards and loyalty offers, and determine credit worthiness and risk. Yet Maria Schuld, FIS Group Executive, Financial Services says banks who use AI and machine learning must be certain to implement ethical approaches to safeguard private and highly personal customer data, and deliver a positive customer experience.
Banks must ensure their machine learning strategy is ethical, for these critical reasons:
Financial institutions (FI’s) who use AI and machine learning can build models to detect customer behavior patterns, like where and when they shop, how much they spend and how they want to pay. Yet, precision is key to intelligent fraud prevention.
Consider the impact incorrect AI-generated false positives can have on customer experience, retention, and interchange revenue, based on the results of one study by Javelin. According to the study, 15 percent of cardholders surveyed said they’d had at least one legitimate transaction declined in the past year. Of those, nearly 40 percent abandoned use of their card completely after the inaccurate fraud detection.
AI can help consumers with little or no recent credit histories gain access to credit with alternative data, like telecom or utility payments. AI-based lending platforms can use hundreds of data points to determine creditworthiness, propensity to default on loans and the possibility of fraud.
Yet, financial institutions must assess risk factors associated with AI, particularly in the areas of credit, debit and fraud. They must ensure that data used in the alternative algorithms to judge creditworthiness is accurate, and verify that machine decisions based on alternative data fall within compliance guidelines. Further, the data cannot be correlated with factors that could lead bankers to make illegal or discriminatory decisions.
Financial Institutions can ensure that AI used in credit risk is ethical by:
FIS leverages data from issuers to enable machine learning in the fight against fraud. This empowers financial institutions to leverage the many benefits of AI, while maintaining the controls and parameters necessary to delivering accurate and consumer-friendly models.
Read more about FIS’ view on the deployment of artificial intelligence in banking and questions surrounding the ethical use of data in this article.
Tags: Digital, Innovative Technology, Risk & Compliance
Let's work together to reach your goals. Contact us at the links below and a representative will be in touch.
We are here to help you and your business. Contact us using the button below.
Learn more©2021 FIS. Advancing the way the world pays, banks and invests™